
ImplementingandBenchmarkingaParallelLDLT FactorizationwithSYCL

Michael Paciullo, Geraud Krawezik
Scientific Computing Core, Flatiron Institute

Rationale
Numerical linear algebra has applications in the fields of machine learning, geometric processing, and physical
simulations. To solve a system of linear equations numerically, factorizing a matrix with methods such as LDU and
QR is preferred for accuracy and speed. Once factorized into LDU or LDLT , solving a system of linear equations
only takes O(n2) additional floating point operations (FLOPs) for forward and backward substitution. For symmetric
matrices, the LDLT decomposition may be preferred over the Cholesky, or LLT , decomposition because it requires
no square root operations, and therefore works for matrices that have negative eigenvalues.
Most large systems of linear equations use sparse matrix storage and matrix algorithms. These sparse algorithms are
based on, and are often implemented with, underlying dense matrix algorithms. GPUs are optimized for dense linear
algebra[1], especially matrix-matrix operations. The goal of this study is to measure the performance of the SYCL
language, a cross-platform GPU programming language that is a superset of C++, against the platform-specific
implementations provided by NVIDIA’s cuSolverDN. Here, we focus on the LDLT decomposition [2] for a symmetric
matrix A with no non-singular principal minors, or "upper-left square corners".

Algorithms used for factorization
If A ∈ Rn×n is a symmetric matrix, and all principal minors of A are non-singular, then A can be factorized into
LDLT where L is a lower-triangular matrix with all diagonal elements equal to 1, and D is a diagonal matrix.

A =


1
l21 1
l31 l32 1
... · · ·

. . .




d1
d2

d3
. . .




1 l21 l31 · · ·

1 l32
...

1
. . .



=


d1

l21d1 d2
l31d1 l32d2 d3

... · · ·
. . .

LT =


d1 l21d1 l31d1

l21d1 l221d1 + d2 l21l31d1 + l32d2
l31d1 l21l31d1 + l32d2 l231d1 + l232d2 + d3

... · · ·
. . .


In general, for aij , i , j ∈ N, i > j ,

aij =
∑j

k=1 lik ljk dk =
∑j−1

k=1 lik ljk dk + lijdj , di = aii −
∑i−1

j=1 l2ij dj , lij = aij−
∑j−1

k=1 lik ljk dk

dj

For example, a43 = l41l31d1 + l42l32d2 + l43d3. Similarly, A ∈ Rmn×mn can also be factorized into block matrices.

A =


ldlt−1(D1) . . .

resolve−1(L21)d1 L21d1LT
21 + ldlt−1(D2) . . .

resolve−1(L31)d1 L31d1LT
21 + resolve−1(L32)d2 L31d1LT

31 + L32d2LT
32 + ldlt−1(D3)

...
...

...
. . .


Di = ldlt(Aii −

∑i−1
j=1 LijDjLT

ij ) Lij = resolve((Aij −
∑j−1

k=1 Lik dk LT
jk )d−1

j )

where m is the number of elements in a block, Lij is an off-diagonal block of the result, Di is a diagonal block
of the result, di is Di with only the diagonal elements included, ldlt() is the LDLT factorization for a matrix, and
resolve() is a subroutine that resolves all dependencies to the right for each column within a block. This algorithm
requires a workspace of m2 n(n+1)

2 elements, and an auxiliary space of m2n elements to store intermediary results of
the dependency resolution step. Block indices are found using the triangular root of each column.

Right-looking updates
A non-diagonal block of A may look likel51d1 l51d1l21 + l52d2 · · ·

l61d1 l61d1l21 + l62d2 · · ·
...

...
. . .

.

In order to extract the unique l values, for each row,
and for each element starting from the left, the element
in column i is stored in an auxiliary matrix, and divided
by di in the workspace matrix. Then, all the elements
to the right are subtracted from by the ljidi element
stored in the auxiliary matrix multiplied by another l el-
ement from the diagonal block at the top of the current
column. We called this subroutine resolve().
The final step for each column is to multiply the Ld
blocks stored in the auxiliary space by the newly-derived
LT blocks in the main workspace. These are dense
matrix-matrix multiplications, which are easily paral-
lelizable and highly optimized on GPUs. This updates
all blocks to the right of the current column. To help
with cache locality, blocks from the left will no longer
be read from or modified.

Comparison to NVIDIA

The performance of our software was measured against
NVIDIA’s implementation of a similar routine, sytrf(),
which does not use packed storage, as part of their
implementation of LAPACK, cuSolverDN. The timing
for both versions includes allocating workspace on the
GPU and copying the matrix to and from the GPU.
Aside from small matrices, NVIDIA’s software is up to
1.8× faster. However, our SYCL implementation is
more memory-efficient due to the use of packed stor-
age, using half as much memory on the CPU and GPU,
in addition to being cross-platform.

Numerical results

The parallel block LDLT algorithm using a packed data
structure, called ssptrf() in LAPACK, was implemented
in both OpenMP, a CPU parallelization library run-
ning on an Intel Xeon with 32 threads allocated, and
SYCL, a cross-platform open standard GPU library, run-
ning on an NVIDIA H100 GPU. Even for small matri-
ces, the GPU version vastly outperforms the CPU ver-
sion. By the time the matrix is of size 40k × 40k ,
a 100-fold speedup by the SYCL implementation over
OpenMP is observed, achieving speeds of more than
3 TeraFLOPS (floating point operations per second).
Starting at mn = 49152, "jaggedness" in the perfor-
mance graph is observed. This may be caused by the
GPU cores being fully occupied. Possible future direc-
tions include adding a pivoting routine to the SYCL ver-
sion for increased numerical stability, and implementing
more packed symmetric LAPACK routines in SYCL for
cross-platform support.

References
[1] Vasily Volkov and James W. Demmel. “Bench-

marking GPUs to tune dense linear algebra”. In:
SC ’08: Proceedings of the 2008 ACM/IEEE Con-
ference on Supercomputing. 2008, pp. 1–11. doi:
10.1109/SC.2008.5214359.

[2] Geraud Krawezik and Gene Poole. “Accelerating
the ANSYS Direct Sparse Solver with GPUs”. In:
June 2009.


